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Nonstable solitons and sharp criteria for wave collapse
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Sharp sufficient criteria for collapse are found for the nonlinear Schrédinger equation in the so-called
supercritical case as well as for the Ginzburg-Landau equation in the case of the subcritical bifurcation.
It is demonstrated that nonstable solitons in these models, under some additional assumptions, play the
role of a “boundary” (saddle points) between collapsing and noncollapsing solutions.
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I. INTRODUCTION

As is well known, there exists a correlation between the
stability of stationary solutions of a nonlinear equation
and the possibility of wave collapse. In most cases, the
instability of steady-state solutions of a nonlinear model
is accompanied by the existence of blow-up for a certain
class of initial data. Wave collapse is a classical example
of a very nonlinear phenomenon that occurs in different
physical contexts (see, e.g., for a review [1-4]). However,
only for a few models, which are of interest for applica-
tions, can the existence of the blow-up be proved analyti-
cally. Our motivation in the present paper is to establish
a link between the instability of soliton solutions in a non-
linear system and the sharp criteria of the blow-up on the
example of two of these models.

Before we present our results, we briefly review the
basis features of some known nonlinear systems for which
sufficient criteria of the blow-up may be found analytical-
ly (see for the details [1-4] and references therein), in or-
der to provide a basis for our subsequent discussion.

(1) The nonlinear Schrodinger equation:

SH

sw*
where the Hamiltonian H is of the form
H= [|V¥|%dr— [|¥|*’*2dr. We consider in this paper
Eq. (1) for the supercritical case, defined by the inequality

od>2.
(2) Nonlinear heating equation:

U=AU+U'", ()
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where the coefficient a is supposed to be positive. There
exist many generalizations of this equation. For simplici-
ty, we mention here only the basic model.

(3) Modified Kadomtsev-Petviashvili equation, describ-
ing the propagation of the narrow beams of the nonlinear
waves in weakly dispersive media. In particular, the evo-
lution of the magnetoelastic waves in antiferromagnets
[5]is governed by Eq. (3):
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For this equation the Hamiltonian H is defined as

H= [[1U2+ LV, W)—U" 2)dr . (4)
Here n is supposed to satisfy the inequality
n=(d +1)/(d —1),d is a space dimension.
(4) The well-posed Boussinesq equation:
Utt - UXX + UXXXX +( U2 )XX =0 * (5)
Equation (5) may be written in the Hamiltonian form
SH SH
=— = 6
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For the system (6) the Hamiltonian H is of the form
H= [(102+ LU+ LU~ 1U%dx ,

Although, the models mentioned above describe rather
different physical problems, they have much in common.
In particular, in each of them negativeness of some func-
tional H is a sufficient condition (in the general case, un-
der some additional assumptions) of blow-up. Equations
(1), (3), and (4) are examples of the Hamiltonian systems.
The sufficient criterion of the collapse in Egs. (1) and (3)
has been found to be H <0 [see Refs. [6,7] for Eq. (1) and
Ref. [5] for Eq. (2)], where by H one means the corre-
sponding Hamiltonian.

For the Boussinesq equation the sufficient condition of
blow-up is H <0 under additional assumptions [8]: (a)
[f®.dx|,_,>0, f,=Uand (b) [ Udx=0.

The nonlinear heating equation (or nonlinear diffusion
equation) is an example of a dissipative system. For Eq.
(2) there exists a kind of Lyapunov functional

1

= 1 2 -
H=[ |HVU? =5 —

U2+a dr ,

satisfying the following evolution equation:

dH
E—Z—fUlzdx . (7)
If initial data are chosen in such a way that the in-
equality H|,_,= <0 holds, then solutions of Eq. (2) be-
come singular in a finite time [9].
The main intent of the present work is to demonstrate
that such criteria may be sharpened. Sharp sufficient
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conditions for the blow-up will be obtained for two
known nonlinear models. A general statement, concern-
ing the link between unstable solitons and the criterion
for the blow-up in the arbitrary nonlinear system, will be
formulated as a hypothesis.

It is well known that for many nonlinear models, inter-
play between nonlinearity and dispersion results in a spe-
cial class of stationary solutions, namely solitons. A soli-
ton corresponds to an exact balance between nonlinear
and dispersion effects. In the case of stable equilibrium,
the corresponding solitons are stable against small per-
turbations. The stable solitons play a fundamental role in
the dynamics of nonlinear systems. Often, however, the
balance between nonlinearity and dispersion corresponds
to unstable stationary solutions. It means that, although
for the stationary problem the influence of nonlinear
effects may be compensated by dispersion broadening of
the wave packet, small perturbations around the soliton
will break such an equilibrium. That leads to the instabil-
ity of the corresponding solitons. As was mentioned
above, there exists the link between the instability of the
solitons and wave collapse. In most cases the instability
of the solitons in nonlinear systems is associated with the
existence of the blow-up in such models. The term
“blow-up” is generally used to refer to the nonexistence
of the initial-value problem for all time. As will be shown
in the present paper, nonstable solitons play an important
role in the determination of the sharp criteria for the col-
lapse.

The basic idea is to use the fact that solitons appear as
a result of the balance between forces that control the
dynamical evolution of the nonlinear system. In other
words, nonstable solitons may be viewed as solutions ly-
ing on the boundary between solutions whose evolution is
determined mainly by dispersion effects and those for
which nonlinear effects are predominant. It is natural to
presuppose that the evolution of the solutions, for which
nonlinear effects dominate, leads to the blow-up, if the
balance between nonlinearity and disperison is unstable.

Using two well-known nonlinear equations, the non-
linear Schrodinger equation and the Ginzburg-Landau
equation, as examples, we will demonstrate that non-
stable soliton solutions, under some additional assump-
tions, play the role of a “boundary” between collapsing
and noncollapsing regimes. This statement may be sug-
gested as a hypothesis for any nonlinear system that
demonstrates the blow-up-type dynamics and possesses
unstable soliton solutions.

II. THE NONLINEAR SCHRODINGER EQUATION
IN THE SUPERCRITICAL CASE

In this section we shall illustrate the main idea on the
example of the nonlinear Schrodinger (NLS) equation,
which has become one of the basic models in nonlinear
science. A review of many aspects of this model has been
given, e.g., in [1-4]. The NLS equation with the power
nonlinearity has nonstable soliton solutions in the so-
called supercritical case: 2/D <o <2/(D —2).

For the critical case o =2 /D the sharp sufficient condi-
tion for the blow-up was obtained by Weinstein [10]. For

simplicity (but without loss of generality) we consider the
case 0 =1 and D =3. In this case, for example the NLS
equation occurs as the subsonic limit of the Zakharov
equations, describing Langmuir waves in plasma. The
analysis of the general case will be presented elsewhere
[11].

From the well-known relation
aZ
?fr2|¢|2dr=8f1—412 (8)

(where the Hamiltonian H = [|VW¥|*dr— [|W[***%dr
=I,—1I,) it is fairly obvious that the negativity of the
Hamiltonian gives a sufficient condition for collapse, but,
at the same time, this condition is not sharp because in
the right-hand side of this relation there is the additional
negative term —4I,. It is evident that if we find a way to
estimate this term from below by some constant (depend-
ing on integrals of motion) then we will get a more sharp
sufficient criterion for collapse. In order to get such an
inequality, we show first that the Hamiltonian can be
bounded from below by some function of I,. To do this,
one may use the following inequality:

I,>CyN 31373 (9)

here N= f [|2dr and the best interpolation constant
Cy=3NZ, was calculated by Weinstein [10]. The value
N, is the value of the integral of motion NN calculated for
the ground-state solution of the equation: Af —f
+f3=0.

Substituting this estimation into the Hamiltonian we
get the following inequality:

H>F(I,)=C,N I}*—1I, . (10)

The remarkable fact is that the maximum of the func-
tion F(I,) is equal to max{F(I,)} =H_ exactly, where H,
is the value of the Hamiltonian for the soliton solution,
and this maximum is attained at the point I, =1, =2H,
I,, being the value of the integral I, calculated for the
soliton.

It follows that for 0 <H < H, the equation H =F(I,)
has two solutions, I}~ and I{*). Inequality (16) is
satisfied for two intervals 0<I,<I’and I, >I"). Our
basic equation implies that any initially smooth solution
evolves continuously in the time interval of the existence,
hence the integral I,(¢) is continuous for any ¢ before the
collapse point. Since the intervals (0,757)) and (J5, )
are disjoint, I,(¢) can never cross from one interval into
another. Now suppose that at the initial moment
I,|,—o>I,;, then I,(¢)>I,, for all . Substituting the es-
timate for I,(¢) into Eq. (8) we obtain the main formula
for this section:

2
%frzlz/;IzdrSS(H—Hs). (11

Thus, the sharp sufficient criterion for the blow-up dy-
namics is the condition H <H;. It should be noted that
in the present paper, in order to avoid unessential com-
plexity, we limit our consideration to the case in which
there is no special focusing on the initial moment
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(a/atfr2|¢l2dr=0)
sidered elsewhere.

We may conclude that the solutions, for which the
Hamiltonian is less than the value of H calculated on the
soliton solution (nonstable), become singular in a finite
time, so that the nonstable soliton solutions in some sense
play the role of a “boundary” between collapsing and
noncollapsing regimes (for details see [11]).

. The more general case will be con-

III. THE GINZBURG-LANDAU EQUATION

In this section a similar theorem will be proved for the
Ginzburg-Landau equation in case of subcritical bifurca-
tion.

We write the Ginzburg-Landau (GL) equation in the
following form:

a—S——-aS+b§—§~+2 R (12)

with the boundary condition S —0 as |x| — . Equation
(12) results from an expansion in some physical parame-
ter near the critical point. In the general case,
coefficients a@, b, and ¢ are complex. Because of the gen-
erality, the GL equation may be applied to a variety of
physical problems, describing the slow evolution of a
mode that bifurcates via an oscillatory instability from a
homogeneous basic state (see, e.g., Refs. [12-15]). For
the case of subcritical bifurcation [Re(c)>0], the GL
equation may be used to describe plane shear-flow insta-
bilities, binary-fluid convection in a the subcritical range,
etc. (see, e.g., references in [15]).

Equation (12) with the real coefficients describes, in
particular, a distributed system, modeling dynamics of a
pulse envelope propagating through a coupled-cavity
mode-locked laser, for a phase-mismatch angle of 7 /2 be-
tween the two cavities [16].

Throughout this paper we assume coefficients q, b, ¢ to
be real and positive. We begin by summarizing the main
properties of Eq. (12).

A trivial homogeneous solution of the Eq. (12), § =0,
is stable against small perturbations, provided the
coefficient a is positive. Thus, under sufficiently weak ini-
tial disturbances the bound state (S =0) remains stable
and the disturbances die out. However, for the initial
data for which nonlinearity is sufficient enough the situa-
tion changes. A perturbation will experience explosive
growth when it becomes sufficiently large for the non-
linear term to come into play. Then the cubic term in
Eq. (12) dominates, causing an amplification of the rate of
increase of the maximum value of |S], a focusing
phenomenon occurs, and S becomes singular at some
finite point ¢,.

The fundamental issue is that the dynamical evolution
of the localized wave packet in Eq. (12) is determined by
the interplay between nonlinear and diffusion terms in the
right-hand side of Eq. (12).

As a result of the balance between nonlinearity and
diffusion there exists an exact soliton solution of Eq. (12)
in the following form:

S(t,x)=Sysech(x /L) , (13)

where the pulse width is given by L =V'b /a and the soli-
ton amplitude is S;=V'a/c. However, this balance is
unsteady and the soliton pulse is unstable (see, e.g., [17]),
i.e., it means that, although the interplay between disper-
sion and nonlinearity allows one to construct a steady-
state solution, there exist perturbations of the soliton
pulse for which nonlinear effects dominate and a collapse
may appear for some class of the initial distributions.

A sufficient criterion for the wave collapse (a class of
initial distributions leading to the collapse dynamics) was
found in [18] by using the method of a majoring equation
[2,19]. In the present paper we find a sharp criterion for
the blow-up in the GL equation (12).

Consider two functionals Q and P defined by

0= [(blS,I>+alS>*—c|S|Ydx =Y +aP —I  (14)
and
P= [|s|%dx . (15)

The first functional may be viewed as the Lyapunov func-
tional for the infinite-dimensional system (12), because Q
obeys the following equation:

Q:

o =—2fIsax . (16)

It means that one possible limiting asymptotic for Eq.
(12) is S—0 as t— . If S is sufficiently small at the
point ¢ =0, this limit will be achieved.

Differentiating P with respect to ¢, we get the equation

d

— 2 2
~P=—2b [IS,IPdx +2a [ |S]%dx +4c [ |s]*dx

=—20 +2c [ [S]*dx . (17)

It follows from Eq. (17) that (d /dt)P >0 for the Q <O0.
Because Q is the nonincreasing function of ¢, if the latter
requirement is satisfied at the initial moment of time, it
will hold for all z. Evidently, if we prove that f |S]4dx
may be bounded from below by some quantity, which
does not depend on time, then we obtain a more sharp
sufficient condition for increasing of the functional P.

We demonstrate first that the functional Q may be
bounded from below by some function of I =c¢ f |S|4dx.

Using the inequality (see, e. g [10])

Jisltax < o= | [ 1stax | [[isax] ™, aw)
we have
b 12 3b 174
Q=Y+aP— 1>3—7+a1> —I1>4 002 I'2—gp
C
=201 —I=f(I) . (19)

Here Q, is a value of the integral Q calculated on the soli-
ton solution (13). Note that the function f has a unique
maximum which is exactly equal to Q,. This maximum is
attained at the point I =I,=Q,. So that, if at the mo-
ment (=0 Q<Q; and additionally I,>I;, then
I(t)>I,=Q, for any ¢ >O0.

To find a sharp criterion for the blow-up in the case of
Eq. (12), we need also the following inequality, which is
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valid for I > Q;:
b I?
Y +aP —2Q, 23— —+aP —2Q;
c° P
2
b Q0
23‘6‘3 P +aP —2Q;

1/4

Ql2—2Q,=0. (20)

3
24“—’2’

Suppose now that the initial value S is chosen so that
the following conditions hold: (a) Q,<Q,, and (b)
I,>1I,=Q,. Then solutions of Eq. (12) can exist only for
a finite time. To prove this statement, we show that some
integral characteristic of solutions that is a positive grow-
ing function of ¢ (the majoring function) tends to infinity
as ¢ tends to some fixed 7;. Consider the time evolution
of the following quantity:

o,—¢Q
R 7 (1)

Differentiating R with respect to ¢, we obtain

d . irien. (Q,—QP,
—R=2P7'[ls,] dx ———— . (22)
The first term in Eq. (22) can be estimated by using the
Holder inequality

d

—P=2[1sl|sl.dx

<2 [ 181%dx)1%( [ IS, %dx )%,

in combination with the formula (17). Inserting the esti-
mate for [ |S,|%dx into Eq. (22), we get the inequality

drR P\ P LR _
2257 | +0—Q, _2P(QS Q+Y+aP—2Q,)
>2R?. (23)

Integrating inequality (23) over time, we find

i.e., rewriting this formula, we obtain, finally the estimate
of the asymptotic form of the function R:

WwR>—1
(¢,—1)

It follows from the last expression that at the point
to=t;=1/2R the function R (¢) becomes infinite. We
conclude from this that, if the initial condition is
sufficiently nonlinear, so that nonlinear term in Q dom-
inates, the perturbations grow indefinitely [within the
framework of Eq. (12)] in a finite time. The sharp
sufficient condition for the blow-up in Eq. (12) is given by

Q|t=0<Qs=%a3/2bl/2c—l
and

I=c [|S|%dx > Q, .

A good feature of the method that we used is that it gen-
eralizes obviously to any space dimension.

In conclusion, we analyze in this paper the role played
by nonstable solitons in the dynamics of nonlinear sys-
tems. Based on the well-known fact that the soliton
occurs as a result of the balance between forces responsi-
ble for the dynamical evolution of the localized wave
packet in the nonlinear system, we suggest that nonstable
solitons lie on the “boundary,” separating collapsing and
noncollapsing solutions. In this way we found sharp cri-
teria for the blow-up for the nonlinear Schrodinger equa-
tion in the supercritical case and for the Ginzberg-
Landau equation in the case of subcritical bifurcation.
The analytical method used here may be applied to other
nonlinear systems.

*Permanent address: Institute of Automation and Elec-
trometry, Russian Academy of Sciences, Novosibirsk
630090, Russia.

[1] V. E. Zakharov, in Handbook of Plasma Physics, edited by
M. N. Rosenbluth and R. Z. Sagdeev (Elsevier, Amster-
dam, 1984).

[2] H. A. Levine, SIAM Rev. 32, 283 (1990).

[3]7J.7J. Rasmussen and K. Rypdal, Phys. Scr. 33, 481 (1986).

[4] D. W. McLaughlin, G. Papanicolaou, C. Sulem, and P. L.
Sulem, Phys. Rev. A 34, 1200 (1986); N. E. Kosmatov, V.
F. Shvets, and V. E. Zakharov, Physica D 52, 16 (1991).

[51S. K. Turitsyn and G. E. Fal’kovich, Zh. Eksp. Teor. Fiz.
89, 258 (1985) [Sov. Phys. JETP 62, 146 (1985)].

[6] V. N. Vlasov, I. A. Petrischev, and V. I. Talanov, Izv. Vys.
Uchebn. Zaved. Radiofizika 14, 1352 (1971).

[7] V. E. Zakharov, Zh. Eksp. Teor. Fiz. 62, 1745 (1972) [Sov.
Phys. JETP 35, 908 (1972)].

[8] V. Kalantarov and O. Ladyzhenskaya, J. Sov. Math. 10,
53 (1978).

[9] H. Fujita, J. Fac. Sci. Univ. Tokyo Sect. A Math. 16, 105
(1966).

[10] M. I. Weinstein, Commun. Math. Phys. 87, 567 (1983).

[11] E. A. Kuznetsov. J. J. Rasmussen, K. Rypdal, and S. K.
Turitsyn (unpublished).

[12] A. C. Newell, in Propagation in Systems Far from Equilib-
rium, edited by J. E. Wesfreid, H. R. Brand, P. Manne-
ville, G. Albinet, and N. Boccara (Springer, Berlin, 1988),
p- 122, and references therein.

[13] A. C. Newell, Pattern Formation and Pattern Recognition
(Springer-Verlag, Berlin, 1979); K. Stewartson and J. P.
Stuart, J. Fluid Mech. 48, 529 (1971).

[14] W. van Saarloos and P. C. Hohenberg, Physica D 56, 303
(1992).

[15] W. Schopf and L. Kramer, Phys. Rev. Lett. 66, 2316
(1991).

[16] P. A. Belanger, J. Opt. Soc. Am. B 8, 2077 (1991).

[17] L. M. Hocking, K. Stewartson, and J. P. Stuart, J. Fluid
Mech. 51, 705 (1972).

[18] S. K. Turitsyn, Phys. Rev. A 47, R27 (1993).

[19] L. E. Payne and D. H. Sattinger, Isr. J. Math. 22, 273
(1975).



